SECTOR: A Neural Model for Coherent Topic Segmentation and Classification
نویسندگان
چکیده
منابع مشابه
Spatially coherent latent topic model for concurrent object segmentation and classification
We present a novel generative model for simultaneously recognizing and segmenting object and scene classes. Our model is inspired by the traditional bag of words representation of texts and images as well as a number of related generative models, including probabilistic Latent Sematic Analysis (pLSA) and Latent Dirichlet Allocation (LDA). A major drawback of the pLSA and LDA models is the assum...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولTopic Segmentation with a Structured Topic Model
We present a new hierarchical Bayesian model for unsupervised topic segmentation. This new model integrates a point-wise boundary sampling algorithm used in Bayesian segmentation into a structured topic model that can capture a simple hierarchical topic structure latent in documents. We develop an MCMC inference algorithm to split/merge segment(s). Experimental results show that our model outpe...
متن کاملA Hierarchical Bayesian Model for Topic Segmentation
Many streams of real-world data, such as conversations or body movements, consist of relatively coherent segments, each characterized by particular topics or controllers. Making sense of these data requires simultaneously segmenting the sequences and inferring the structure of the segments. We present a hierarchical Bayesian model that can be used to break a sequence of utterances or movements ...
متن کاملA Dynamic Topic Model for Document Segmentation
Factor language models, like Latent Semantic Analysis, represent documents as mixtures of topics, and have a variety of applications. Normally, the mixture is computed at the whole-document level, that is, the entire document contains material on several topics, without specifying where they occur in the document. In this paper, we describe a new model which computes the topic mixture estimate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Association for Computational Linguistics
سال: 2019
ISSN: 2307-387X
DOI: 10.1162/tacl_a_00261